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Topology-Preserving Motion Coordination for
Multi-Robot Systems in Adversarial Environments

Zitong Wang, Yushan Li, Xiaoming Duan, and Jianping He

Abstract—The interaction topology plays a significant role
in the distributed motion coordination of multi-robot systems
(MRSs) for its noticeable impact on the information flow between
robots. However, recent research has revealed that in adversarial
environments, the topology can be inferred by external adver-
saries equipped with advanced sensors, posing severe security
risks to MRSs. Therefore, it is of utmost importance to preserve
the interaction topology from inference attacks while ensuring the
coordination performance. To this end, we propose a topology-
preserving motion coordination (TPMC) algorithm that strate-
gically introduces perturbation signals during the coordination
process with a compensation design. The major novelty is
threefold: i) We focus on the second-order motion coordination
model and tackle the coupling issue of the perturbation signals
with the unstable state updating process; ii) We develop a
general framework for distributed compensation of perturbation
signals, strategically addressing the challenge of perturbation
accumulation while ensuring precise motion coordination; iii)
We derive the convergence conditions and rate characterization
to achieve the motion coordination under the TPMC algorithm.
Extensive simulations and real-world experiments are conducted
to verify the performance of the proposed method.

Index Terms—Multi-robot systems; interaction topology; topol-
ogy preservation; signal processing; inference attack.

I. INTRODUCTION

A. Background

Over the past few decades, the motion coordination of multi-
robot systems (MRSs) has received considerable attention in
both civil and military fields, such as robotic surveillance
and search [2]–[4], swarm flocking and rendezvous [5]–[7],
unmanned warehousing [8] and cooperative localization [9].
In these applications, each robot has limited sensing and
communication capacities and needs to coordinate with others
through interactions to accomplish specific tasks. In partic-
ular, the interaction topology of the MRS characterizes the
information flow among robots, and the sensed and received
information are processed for achieving further coordination
behaviors. The significance of the interaction topology of
MRSs is reflected in its impact on autonomy, adaptation,
scalability, and efficiency [10].
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Although the onboard sensors enable MRSs to achieve
cooperative tasks, they can also be maliciously utilized by
external adversaries to measure the motion information of
MRSs (e.g., displacements and velocities) in the open space.
Based on the collected information, the adversaries can further
disclose the sensitive interaction topology by the latest infer-
ence methods to support more severe and precise attacks [11],
leading to severe security breaches. For instance, armed with
knowledge of the topology, adversaries can predict the future
states of critical robots and execute precise interceptions [12].
Alternatively, they can hijack the important communication
links, thereby incapacitating the system [13]. In the load trans-
portation task [14], the attack on the interaction topology will
limit the throughput of the transportation network. Similarly,
in the surveillance scenarios [3], simple physical attacks can
result in hampering surveillance efficiency. Such attacks can
severely deteriorate the coordination performance of MRSs,
underscoring the importance of topology preservation.

In this paper, we consider a scenario where the sensitive
interaction topology of MRSs is vulnerable to being inferred
by external adversaries and aim to protect the interaction
topology by designing disturbance signals while not harming
the motion coordination performance.

B. Motivation

The problem we are addressing is primarily motivated by the
fact that the interaction topology of MRSs may be disclosed
in adversarial environments. To mitigate the potential security
risks resulting from the topology inference attack, it is of great
importance to develop more secure algorithms that efficiently
protect the actual topology while simultaneously maintaining
motion coordination performance for real-world applications.

However, in real-world systems, the topology-preserving
problem remains an open issue. Multi-robot systems in prac-
tical scenarios often exhibit more complex dynamics than
first-order systems, which consequently pose challenges in
deriving theoretical results. Furthermore, existing methods in
recent literature may not be directly applicable to solving
topology-preserving problems in real-world systems due to the
disparities in system characteristics and objectives, bringing
difficulties in the algorithm design.

C. Related Works

Topology inference methods: Since the MRS is a typical
network system, various studies aimed at estimating interac-
tion topology based on accessible observation data can be
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leveraged for topology inference, such as the spectral analysis-
based approach [15], causality-based estimator [16], identi-
fication method [17], reinforcement learning [18], etc. Nu-
merous researchers have explored the utilization of graphical
models to depict relationships between various variables and
adopt graph signal processing (GSP) techniques to deduce the
concealed topology, as in references [19]–[21]. The primary
idea underlying these works is utilizing the information of the
sample correlation matrix and subsequently reconstructing the
topology. Vector autoregressive analysis [22], [23] also stands
as a prevalent tool in this context.

Defense methods: Researchers have addressed specific
security issues for the cooperative control of MRSs, such as
protecting the privacy of agents [24], [25], bolstering resilience
against false data injection attacks [26], and enhancing robust-
ness in dealing with intermittent communications and actuator
faults [27]. In these defense mechanisms, dynamic topology
and noise-adding algorithms are two commonly employed
methods. In the former approach, the interaction topology
of the MRS changes over time, significantly increasing the
uncertainty regarding the states of the agents, thereby enhanc-
ing protection for the MRS [28]–[30]. These methods usually
exhibit a strong dependence on topology connectivity and can
become complex. On the other hand, noise-adding algorithms
add additional noisy signals to the states of the robots, ob-
scuring the state information from potential adversaries [24],
[25], [31], [32]. For example, the authors in [24] propose a
differential privacy scheme based on Laplace noise to preserve
the privacy of the agents’ states. For example, a noise-adding
algorithm is introduced to preserve the privacy of the initial
states while achieving exact average consensus in the sense of
mean square convergence in [25].

Topology-preserving approaches: Noise-adding methods
are promising choices for designing the topology-preserving
motion coordination algorithm due to their flexibility and
effectiveness in addressing specific requirements without a
strong dependence on topology. Note that although the popular
differential privacy has been widely used to characterize the
data privacy in noise-adding mechanisms, it is not appropriate
to characterize the privacy of an inferred topology, which is
highly nonlinear about the system states. Recent work [33] has
made prior efforts to preserve the topology of first-order multi-
agent systems under the inference error metric. However, the
proposed algorithm can not be directly applied to second-order
MRSs. This difficulty is caused by the differences between
the first-order dynamics and the second-order dynamics. In
second-order dynamics, the accumulative effect of the per-
turbation signals across different dimensions can ultimately
deteriorate the convergence of the coordination algorithm.
Thus, how to preserve the topology of second-order MRSs
remains an open issue.

D. Contribution

Motivated by the above discussions, this paper focuses on
achieving topology-preserving motion coordination in MRSs
by designing perturbation signals. Specifically, we propose a
distributed topology-preserving motion coordination (TPMC)

algorithm that leverages sensor data and designs strategi-
cally dependent self-compensating perturbation signals, which
effectively conceals the actual topology structure from the
inference attack without sacrificing the performance of motion
coordination. The primary challenge in designing this algo-
rithm is to retain precise motion coordination in a distributed
manner while maximizing protection against inference attacks.

Some preliminary results of this paper have been presented
in [1], which gives specific algorithm examples that are
suitable for undirected networks. In this paper, we extend the
previous approach to general directed networks and provide
corresponding theoretical guarantees and experimental valida-
tions. The main contributions of our work can be summarized
as follows:

• We address the problem of topology preservation for
MRSs with second-order dynamics, and we propose a
distributed algorithm that protects the interaction topol-
ogy while guaranteeing coordination performance. Both
finite and infinite perturbation signals are considered for
the preservation design.

• By exploiting the sufficient and necessary conditions on
added perturbation signals for achieving precise motion
coordination, we propose a general self-compensating
perturbation design for the state-updating process of each
robot without relying on global system knowledge.

• We obtain the convergence rate of the MRS under the
designed perturbation signals, and derive the relationship
between the inference errors and the number of obser-
vations. Representative simulations and real-world ex-
periments demonstrate the effectiveness of the proposed
algorithm when dealing with various attacks with the
inferred topology.

Notation: Let 1 be an all-one column vector, and 0 be an
all-zero column vector with compatible dimensions. Let N and
N+ represent the sets of non-negative integers and positive
integers, respectively. Let R be the set of real numbers. Let
∥·∥ and ∥·∥F represent the spectral norm and Frobenius norm
of a matrix, respectively. For two functions f(x) and g(x),
f(x) = O(g(x)), x → ∞ means that there exists a positive
real number M and a real number x0 such that ∥f(x)∥ ≤
Mg(x),∀x ≥ x0.

The remainder of this paper is organized as follows: Section
II provides essential preliminary information and the problem
formulation. The proposed algorithm and its analysis are in
Section III and Section IV, respectively. Section V shows
the simulations and real-world experiments of the algorithm.
Finally, Section VI concludes the work.

II. PRELIMINARIES

Let G = (V, E) be a directed graph that models the
topology information within the multi-robot system, where
V = {1, . . . , N} is the set of nodes and E ⊆ V × V denotes
the set of edges. Each node represents a robot, and each edge
(i, j) ∈ E indicates that a robot i will utilize the sensor to
measure the state information of robot j. The weight of the
edge indicates to which degree the sensor data is utilized. The
adjacency matrix AG = [aij ]N×N of a graph G with N robots
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specifies the interaction topology of the system, where aij > 0
if (i, j) ∈ E , otherwise aij = 0. Let Ni = {j | (i, j) ∈ E} be
the neighbor set of robot i and di = |Ni| be its in-degree.
Define the Laplacian matrix of G by LG = DG − AG , where
DG is the diagonal matrix of all in-degrees.

A. Motion Coordination Algorithm

In this section, we introduce a basic motion coordination
algorithm with second-order dynamics where robots are driven
to a prescribed formation. Consider a network of N robots
whose interaction relationship is captured by a graph G with
N nodes. Each robot i is a double-integrator described by

ṗi(t) = vi(t), v̇i(t) = ui(t), ∀i ∈ V, (1)

where pi(t) ∈ R and vi(t) ∈ R are the position and velocity
of robot i at time t ≥ 0, respectively, and ui(t) ∈ R is the
corresponding control input signal.

Since control input signals are applied at discrete sampling
times in practice, we discretize the dynamics with sampling
period T [34]. The system (1) then becomes:{

pi(k + 1) = pi(k) + Tvi(k) +
T 2

2 ui(k), ∀i ∈ V,
vi(k + 1) = vi(k) + Tui(k), ∀i ∈ V,

(2)

where pi(k), vi(k), ui(k) are the position, velocity, and control
input signal for robot i at time t = kT , respectively. Let ∆ij be
the desired position deviation between robot i and robot j in a
formation. The objective of the motion coordination algorithm
is to drive the robots to the following desired pattern

lim
k→∞

[pi(k)− pj(k)] = ∆ij , ∀i, j ∈ V,

lim
k→∞

[vi(k)− vj(k)] = 0, ∀i, j ∈ V.
(3)

To simplify the notation, we use the relative position
p̃i(k) = pi(k)− ηi of robot i in the rest of this paper, where
ηi − ηj = ∆ij . The following algorithm which considers
the relative positions and velocities is adopted for motion
coordination:

ui(k)=−
∑
j∈V

aij [(p̃i(k)−p̃j(k))+α(vi(k)−vj(k))] , (4)

where α is a positive scalar. In this algorithm, robots seek
to achieve the prescribed formation by sensing the relative
positions and velocities of the neighbors and leveraging the
sensor data to design control input signals. The discrete-time
system model (2) under the algorithm (4) can be written in
the following matrix form:[

p̃(k + 1)
v(k + 1)

]
=

[
IN − T 2

2 LG TIN − αT 2

2 LG
−TLG IN − αTLG

]
︸ ︷︷ ︸

G

[
p̃(k)
v(k)

]
, (5)

where p̃(k) =
[
p̃1(k) · · · p̃N (k)

]⊺
is the concatenated

relative position vector, v(k) =
[
v1(k) · · · vN (k)

]⊺
is the

concatenated velocity vector, and IN is an identity matrix.

Assumption 1. Graph G has a directed spanning tree and LG
has eigenvalues λ1 = 0 and 0 < |λ2| ≤ · · · ≤ |λN |.

Define two sets,

Qr =
⋂

∀Re(λi)>0
Im(λi)=0

{
(α, T ) | T

2
< α <

2

λiT

}
, (6a)

Qc =
⋂

∀Re(λi)>0
Im(λi )̸=0

{
(α, T ) | T

2
< α <

ϕ(λi)

T

}
, (6b)

where ϕ(λi) ≜ − 8Im(λi)
2

|λi|4(T−2α)2 +
2Re(λi)
|λi| . The following lemma

provides the necessary and sufficient conditions for conver-
gence for motion coordination of the MRS.

Lemma 1. (Theorem 4.2 in [34]) Under Assumption 1, the
desired coordination (3) can be achieved asymptotically if and
only if the parameters (α, T ) ∈ Qc ∩ Qr. Specifically, the
velocities and the relative positions of the robots satisfy{

lim
k→∞

|vi(k)−w⊺v(0)| = 0, ∀i ∈ V , (7a)

lim
k→∞

|p̃i(k)− (w⊺p̃(0) + kTw⊺v(0))| = 0, ∀i ∈ V , (7b)

where
[
w⊺ 0⊺

N

]⊺ ∈ R2N is the left eigenvector of the matrix
G associated with µ1 = 1 satisfying w⊺1N = 1.

Lemma 1 shows that the desired states of the robots in
motion coordination are the weighted sums of initial relative
velocities and positions of robots in the system, respectively.
It is worth noting that (6a) and (6b) are not difficult to satisfy
when T is much smaller than 1 and α is chosen properly.

B. Topology Inference Mechanism

Under the motion coordination algorithm, the system model
can also be written as:[

p̃(k)
v(k)

]
= Gk

[
p̃(0)
v(0)

]
. (8)

The motion coordination process (8) tightly couples with
the interaction topology among the robots, and the changes
in the relative positions and velocities may reveal important
information about the underlying topology of the MRS.

The objective of the adversaries is to obtain the Laplacian
matrix LG of the graph G. In the MRS, the parameters α
and T , as well as the Laplacian matrix LG are all unknown
to the adversaries. The parameter T can be identified from
observations. The difficulty regarding obtaining the unknown
parameter α can be circumvented through inferring the matrix
G and subsequently extracting the related matrix LG from part
of G. Consider the scenario where adversaries collect all the
position and the velocity data from time 0 to time k and then
use the Ordinary Least Squares (OLS) estimator to regress
the Laplacian matrix LG . Let x(k) =

[
p̃(k)⊺ v(k)⊺

]⊺
. Stack

the vectors and denote Y (k) =
[
x(0) · · · x(k − 1)

]
and

Z(k) =
[
x(1) · · · x(k)

]
. Specifically, we use the notations

Yθ(k) and Zθ(k) when perturbation signals θ(k) are added
to show the difference between the original data and the
perturbed data. The regression problem is formulated as:

min
Ĝ(k)

∥∥∥Ĝ(k)Yθ(k)− Zθ(k)
∥∥∥2
F
. (9)
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In the above equation, Ĝ(k) is the inferred matrix based on
data from time 0 to time k. If matrix Yθ(k)

⊺ has full column
rank, which is generally the case, the optimal solution of (9) is
given by Ĝ(k)⋆ = Zθ(k)Yθ(k)

⊺
(Yθ(k)Yθ(k)

⊺
)−1. Then, the

inferred matrix Ĝ can be divided into four blocks Ĝ(k) =[
ĜA(k) ĜB(k)

ĜC(k) ĜD(k)

]
, where ĜA(k), ĜB(k) can be written as:

ĜA(k) = IN − T 2

2
L̂GA(k), ĜB(k) = −T L̂GB(k).

Then the inferred matrix L̂G(k) can be extracted from Ĝ(k)
by the following function f(·):

L̂G(k) = f(Ĝ(k)) =
1

2

(
L̂GA(k) + L̂GB(k)

)
=

1

T 2
IN − 1

T 2
ĜA(k)−

1

2T
ĜB(k).

(10)

Note that if we utilize the right blocks ĜC(k) and ĜD(k) of
Ĝ(k), then the inferred matrix L̂G(k) can be more accurate.
However, as the right blocks contain the unknown parameter
α, it is complex to solve for these two coupling variables
simultaneously. Furthermore, it is sufficient to utilize ĜA(k)
and ĜB(k) to derive the matrix L̂G(k) in practice.

After retrieving the estimated Laplacian matrix, the adver-
saries can launch targeted attacks. The attacks considered in
this paper are summarized and categorized as follows:

1) Sensor Attack: This type of attack targets the sensors of
a robot, rendering it incapable of sensing the accurate
states of its neighbors.

2) Mobility Attack: This type of attack involves immobi-
lizing a robot or impairing its ability to change its states.

If the system maintains a directed spanning tree after
attacks, the formation will experience no distortion. Oth-
erwise, the absence of a directed spanning tree can lead
to undesirable distortion, posing a significant challenge to
motion coordination. Furthermore, it is worth noting that for
systems modeled by directed graphs, merely maintaining a
spanning tree is insufficient to guarantee the performance of
motion coordination. This is because the formation can still
deviate from the prescribed formation due to the changes in
the interaction topology, which strongly impacts the relative
weights in the network.

C. Problem Formulation

In this paper, we mainly consider how to conceal the actual
topology of the MRS by adding perturbation signals to the
states of the robots. The regular algorithm (4) is revised to

ũi(k) = ui(k) + θi(k), (11)

where the design of ui(k) follows (4) and θi(k) is the
perturbation signal. The system (5) can be rewritten as[

p̃(k + 1)

v(k + 1)

]
= G

[
p̃(k)

v(k)

]
+

[
T 2

2 θ(k)

Tθ(k)

]
, (12)

where θ(k) ∈ RN is the vector of perturbation signals at
time k. Generally, the system model can be written as follows:[

p̃(k)

v(k)

]
= Gk

[
p̃(0)

v(0)

]
+

k−1∑
ℓ=0

Gk−ℓ−1

[
T 2

2 θ(ℓ)

Tθ(ℓ)

]
. (13)

It can be seen that the dynamics of the robots under (11) will
be affected not only by the topology information of the system
but also by the designed perturbation signals.

The objective of this paper is to develop a topology-
preserving algorithm that can effectively prevent adversaries
from inferring the topology accurately while guaranteeing the
prescribed formation in the MRS. Hence, we formulate an
optimization problem as follows.

max
θ

∥∥∥∥∥f
(
argmin

Ĝ(k)

∥∥∥Ĝ(k)Yθ(k)− Zθ(k)
∥∥∥2
F

)
− LG

∥∥∥∥∥
2

F

s.t. (7a) and (7b) hold.

(14)

Our foremost concern is designing optimal perturbation sig-
nals that maximize the inference error for potential adversaries
while ensuring precise motion coordination. However, the
optimal solution to this problem is intricately tied to the global
interaction topology, which contradicts our intention to employ
a distributed approach in designing the perturbation signals.
Therefore, the solution is constrained to increase the inference
error through specific algorithms, without guaranteeing the
optimality in this regard. Another challenge stems from the
second-order dynamics, which necessitates a careful design to
mitigate the accumulative effect of the perturbation signals.

III. ALGORITHM DESIGN

In this section, we propose the TPMC algorithm to address
the challenges mentioned in Section II. First, we demonstrate
the key idea that promotes the feasibility of the proposed
algorithm. Then, we present the detailed algorithm design.

A. Key Idea

To fulfill the requirements of the formulated problem, the
TPMC algorithm is designed consisting of two major parts: in-
ject additive perturbation signals thus enlarging the regression
errors, and add compensating perturbation signals to ensure the
convergence of the MRS. Instead of adding random signals,
we add well-designed self-compensating perturbation signals
to the robots, which can ensure precise motion coordination.

According to (5), the subsequent state of a robot depends
on the current states of its neighbors and itself. In this way,
the perturbation signal of one robot will spread its influ-
ence through the topology, thereby affecting the coordination
performance of the entire system. To achieve the prescribed
formation (3), the following lemma is needed.

Lemma 2. Under the finite perturbation signal sequence
{θ(ℓ), ℓ = 0, · · · , k0}, the desired motion coordination can
be achieved at time k0 if and only if

k0∑
ℓ=0

w⊺θ(ℓ) = 0,

k0∑
ℓ=0

ℓw⊺θ(ℓ) = 0. (15)
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Proof. The proof is provided in Appendix A.

This lemma indicates that the perturbation signals have
an accumulative effect on positions and velocities over time,
which poses an inevitable challenge to the algorithm design.
Note that the distinction between this lemma and Lemma 3.1
in [33] lies in that they describe the conditions of the perturba-
tion signals in directed and undirected networks, respectively.

However, it is important to recognize that these conditions
can only be formulated and evaluated from a centralized
perspective. Given our emphasis on designing a distributed
approach, the practical conditions for θ tend to be more restric-
tive for both undirected and directed networks, as elucidated
in the following lemma.

Lemma 3. Under the finite perturbation signal sequence
{θ(ℓ), ℓ = 0, · · · , k0}, the desired motion coordination can
be achieved distributedly if the following condition holds

k0∑
ℓ=0

θi(ℓ) = 0,

k0∑
ℓ=0

ℓθi(ℓ) = 0, ∀i ∈ V, (16)

where the number of non-zero entries in {θi(ℓ), ℓ = 0, · · · , k0}
is larger than or equal to 3.

Proof. The proof is also provided in Appendix B.

Lemma 3 demonstrates that the perturbation signal can be
designed for individual robots in a distributed manner without
relying on global knowledge of the topology, to guarantee the
desired motion coordination. Similar results can be applied to
higher-order systems, as the following remark illustrates.

Remark 1. Similar to Lemma 3 for the second-order systems,
the conditions for the motion coordination of n-th order
sampled-data discrete-time system under finite perturbation
signals can be obtained as the following general form

k0∑
ℓ=0

ℓn0θi(ℓ) = 0, ∀n0 ∈ {0, · · · , n− 1}, ∀i ∈ V, (17)

where the number of the non-zero entries in the signal se-
quence is larger than or equal to n+ 1.

Note that the non-zero entries in the signal sequence
{θi(ℓ), ℓ = 0, · · · , k0} can be seen as the free variables in
the homogeneous equations in (17). When the number of the
non-zero entries is larger than or equal to n + 1, the overall
system is under-determined, leading to infinite possible non-
zero solutions for the sequence. In the next subsection, we will
provide an efficient signal design method.

B. Perturbation Signal Design

Let ai(k) ∈ [−φk, φk] be a random variable with a bounded
distribution. Let Fk(ai(k)) be the cumulative distribution
functions of ai(k) and Fk(ai(k)) = F0(

ai(k)
φk ). The variance

of ai(k) can be written in a general form:

σ2
k = σ2

0φ
2k, 0 < φ ≤ 1, (18)

Algorithm 1: Topology-Preserving Motion
Coordination (TPMC) Algorithm
Input: G,T, k0, τe, p̃(0), v(0), ϵ, φ;
Output: Observation data set;
Initialization;
for k = 0, 1, . . . do

if k ≤ k0 − τe then
for i = 1, · · · , N do

Generate bi(k) and τe;
if bi(k) = 1 then

Randomize ai(k) ∈ [−φk, φk];
for m = 0, · · · , τe do

ωi(k +m | k) = cm × ai(k);
end

end
Calculate θi(k) by (21);

end
end
Update p̃(k + 1) and v(k + 1) by (12);

end

where σ2
0 is the variance of ai(0). Denote bi(k) as the

additive perturbation signal indicator that follows a Bernoulli
distribution, given by

Pr{bi(k) = 1} = ϵ, Pr{bi(k) = 0} = 1− ϵ, 0 < ϵ ≤ 1.

Based on Lemma 3, we propose a general algorithm that
satisfies (16), thereby guaranteeing the prescribed formation.
In the algorithm, the additive perturbation signal ωi(k | k) is
added for the i-th robot at time k if bi(k) = 1. To balance
its effect on formation, compensating perturbation signals
ωi(k + ℓ | k), ℓ ∈ N+ are imposed after several iterations.

Denote {cm}τem=0 as the coefficient of the τe-lag time
dependence algorithm, which has the following properties:
τe∑

m=0

cm = 0,

τe∑
m=0

mcm = 0, and |cm| < c̄,∀m ∈ {0, · · · , τe},

(19)
where c̄ < ∞ is a finite upper bound of {cm}τem=0. The ad-
ditive perturbation signals and the compensating perturbation
signals can be unified in the following form:

ωi(k +m | k) = cmai(k), ∀m ∈ {0, · · · , τe}. (20)

Note that this kind of perturbation signal design represents
a general form of τe-lag time dependence algorithm, with
the examples introduced in [1] being particular instances of
this concept. Within this general perturbation signal design,
τe ≥ 3 is a variable that can be either fixed manually or
randomized within a specified range. Note that the amplitude
of the compensating perturbation signal is influenced by both
ai(k) and the configuration of the {cm}τem=0 sequence.

Note that the proposed algorithm generates a sequence
of dependent perturbation signals rather than independent
signals. If independent perturbation signals were used, then
to guarantee the achievement of prescribed formation in the
MRS, the amplitudes of the independent perturbation signals
should be decaying. However, the inference error of the system
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will converge to zero in this case, which is undesirable.
Therefore, the design of the dependent perturbation signals
serves a critical purpose.

In general, the expression of θi(k) is

θi(k) =

k∑
ℓ=0

ωi(k | k − ℓ)bi(k − ℓ), (21)

which shows that at time k, the additive perturbation signal,
and the compensating signals are summed up to form the
resulting noise θi(k). Specifically, the details of the TPMC
algorithm are illustrated in Algorithm 1. Note that in this
algorithm, when k0 − τe < k ≤ k0, only the compensating
perturbation signals are added. Since the compensation period
is τe + 1, it is easy to reach that θi(k) is a sum of at most
τe + 1 non-zero numbers. When k0 − τe is finite, φ ≤ 1
is sufficient for convergent motion coordination, and we call
it a finite TPMC algorithm. In contrast, when k0 − τe is
infinite, the value of φ should be strictly bounded to φ < 1 to
guarantee the convergence of motion coordination, and we call
it an infinite TPMC algorithm. Unless otherwise specified, the
TPMC algorithm refers to both kinds. Detailed analysis will
be presented in the next section.

IV. PERFORMANCE ANALYSIS

This section presents the performance analysis of the TPMC
algorithm, including the convergence analysis and the infer-
ence error analysis. In the first part, we prove that the system
can reach the exact convergence under the TPMC algorithm,
and we use the method in [35] for reference to derive the
mean square convergence rate. In the second part, the non-
asymptotic error bound of the inference attack is given.

A. Convergence Analysis

When the TPMC algorithm is applied to the system, the
added perturbation signals to the robots will confuse not only
the adversaries but also the neighboring robots. In order to
ensure the normal performance of the system, convergence to
the desired motion coordination must be guaranteed.

Theorem 1. Given any p̃(0) and v(0) and using the finite
TPMC algorithm with φ ≤ 1, the desired motion coordination
can be achieved, i.e., (7a) and (7b) hold.

Proof. The proof is provided in Appendix C.

Theorem 1 shows that the finite TPMC algorithm can always
guarantee the prescribed formation even for φ = 1. However,
such property does not hold when infinite perturbation signals
are used and the prescribed formation can only be ensured in
a mean square sense, as shown in the following result.

Theorem 2. Given any p̃(0) and v(0) and using the infinite
TPMC algorithm with φ < 1, then the prescribed formation
can be achieved in the mean square sense, i.e.,

lim
k→∞

E

∥∥∥∥∥
[
p̃(k)

v(k)

]
−

[
p̃c(k)

vc(k)

]∥∥∥∥∥
2
 = 0, (22)

where
[
p̃c(k)⊺ vc(k)⊺

]⊺
is the unperturbed state updated by

(4). Specifically, the smaller φ is, the faster the expectation of
the deviation converges to zero.

Proof. The proof is provided in Appendix D.

Next, we characterize the convergence rate of the TPMC
algorithm. For systems with second-order dynamics, the con-
vergence rate is dominated by the eigenvalues of G. If As-
sumption 1 is satisfied, matrix G has 2N eigenvalues that are
not necessarily distinct. Generally, G can be represented by
the following Jordan decomposition form

G = M diag {J1, J2, · · · , Jq}M−1, (23)

where M ∈ R2N×2N is an invertible matrix and Jq, q ≤ N
are the corresponding Jordan blocks. Specifically, the first

Jordan block J1 =

[
1 1
0 1

]
always holds. Denote the spectrum

as spec(G) = {µ1, µ2, · · · , µ2N} and the essential spectral
radius as µm(G) = max{|µ| |µ ∈ spec(G)\{1}}.

The mean square convergence rate under the motion coor-
dination algorithm is defined as

ρm ≜ lim
k→∞

(
sup

δ(0)̸=0

E[δ(k)⊺δ(k)]
δ(0)⊺δ(0)

) 1
k

, (24)

where δ(k) is the deviation between the actual states and the
prescribed states, i.e.,

δ(k)=

[
p̃(k)
v(k)

]
−
[
p̃∗(k)
v∗(k)

]
=

[
p̃(k)
v(k)

]
−
[
w⊺(p̃(0) + kTv(0))1N

(w⊺v(0))1N

]
.

Applying the TPMC algorithm to the MRS, the mean square
convergence rate is determined by the following theorem.

Theorem 3. Given any p̃(0) and v(0) and using the TPMC
algorithm, the mean square convergence rate of achieving the
prescribed formation is given by

ρm = max
{
(ϵCφ)2, µm(G)2

}
. (25)

where C =
∑τe

m=0 |cm| is the constant depending on the
perturbation sequence {cm}τem=0.

Proof. The proof is provided in Appendix E.

The above theorem suggests that the TPMC algorithm can
guarantee an exponential mean square convergence, and the
convergence rate can be tuned by the parameters ϵ, C, φ in
the TPMC algorithm.

B. Inference Error Analysis

To keep the adversaries from inferring the actual topology,
we need to enlarge the regression error ∆L(k) = L̂G(k)−LG .
As is mentioned in Section II, the optimal solution of the OLS
estimator is Ĝ(k)⋆ = Zθ(k)Yθ(k)

⊺(Yθ(k)Yθ(k)
⊺)−1. Then

the deviation of the topology inference can be described as
∆G(k)=Ĝ(k)−G = Θ(0; k)Yθ(k)

⊺(Yθ(k)Yθ(k)
⊺)−1, where

Θ(0; k)=Zθ(k)−Ĝ(k)Yθ(k)=

[
T 2

2 θ(0) · · · T 2

2 θ(k − 1)

Tθ(0) · · · Tθ(k − 1)

]
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indicates the residual of the inference. According to the
function f(·) that extracts L̂G(k) from the inferred matrix
Ĝ(k) in (10), the following theorem reveals the relationship
between ∆L(k) and ∆G(k).

Theorem 4. The relationship between ∆L(k) and ∆G(k) can
be described by

∥∆L(k)∥2F ≤ max

{
1

T 4
,

1

4T 2

}
∥∆G(k)∥2F .

Proof. Following (10), the regression error ∆L(k) can be
written as

∆L(k) = − 1

T 2
∆GA

(k)− 1

2T
∆GB

(k), (26)

where ∆GA
(k) and ∆GB

(k) describe the inference errors of
the upper left block and the lower left block of the matrix
Ĝ(k), respectively. Together with the inequality ∥∆GA

(k)∥2F+
∥∆GB

(k)∥2F ≤ ∥∆G(k)∥2F , it can be deduced that

∥∆L(k)∥2F =
1

T 4
∥∆GA

(k)∥2F +
1

4T 2
∥∆GB

(k)∥2F

≤ max

{
1

T 4
,

1

4T 2

}
∥∆G(k)∥2F .

The proof is completed.

The following theorem further exhibits the relationship
between the error bound ∥∆L(k)∥ and time k.

Theorem 5. Applying the TPMC algorithm to the system (2),
the error bound of the OLS estimator is characterized by:

lim
k→∞

E [∥∆L(k)∥] =

{
O(1), φ < 1,

O(
√
k), φ = 1.

Proof. The proof is provided in Appendix F.

Theorem 5 shows that the inference error does not converge
with time k approaching infinity. The difficulties in giving a
more tight bound of ∥∆L(k)∥ lie in the following two aspects.

• The system with second-order dynamics is unstable, for
the geometric multiplicity of eigenvalue 1 in matrix G
equals one and its algebraic multiplicity equals two.
Consequently, the influence of the perturbation signals
can accumulate and be magnified during the coordination
process, which is hard to characterize.

• The added perturbation signals are temporally dependent
while decaying with time, and the mainstream analytical
techniques (like concentration measures that are mainly
for i.i.d. cases [36] and consistency analysis for OLS
estimator [23]) are not applicable.

V. SIMULATIONS AND EXPERIMENTS

In this section, we verify the effectiveness of the TPMC
algorithm via simulations and real-world experiments. To show
the motions of unmanned ground vehicles (UGVs) in a real
multi-robot system, the experiments are conducted on a two-
dimensional plane for both simulations and real-world experi-
ments. The objective of the experiments is motion coordination
in the sense that robots converge to the prescribed formation
pattern with the same velocity.

TABLE I
THE DISTORTION Ed1 AND THE DEVIATION Ed2 UNDER ATTACKS

USING DIFFERENT ALGORITHMS

Sensor Attack Mobility Attack
Ed1 Ed2 Ed1 Ed2

Normal Algorithm (4) 0.0144 4886.6082 0.1195 3516.3338
The TPMC algorithm 0.0252 2196.2106 658.3563 766.2431

In the two-dimensional case, the algorithm is applied for the
robots on both the x-axis and the y-axis. The relative positions
and velocities of the i-th robot at time k are denoted as p̃x,i(k),
p̃y,i(k), vx,i(k), and vy,i(k).

Following the categorization of attacks in Section II-B,
several key concepts are given for a better understanding of
the inference attacks.

1) Robot Importance: This metric quantifies the degree to
which a robot is important for maintaining a prescribed
formation. It can be expressed by the weight of the robot
(diagonal elements) in the Laplacian matrix LG or the
number of its out-degree neighbors.

2) Attack Effectiveness: This measures the extent to which
the same attack (e.g., attacking robots or links with
equivalent numbers, or injecting malicious signals of a
certain magnitude) impairs the overall performance of
the system.

In the context of motion coordination, the effectiveness of an
attack can be assessed through two indicators: the distortion
of the prescribed formation pattern and the deviation of the
robots from the prescribed formation states, respectively.

A. Simulation Setting

A directed graph with three robots that represents the inter-
action topology of the system is randomly constructed. Assign
all the robots with the specific initial states and interaction
links, and define the desired position deviation between robots
in a formation. Start the iteration under the TPMC algorithm
as in Algorithm 1.

The adjacency matrix AG and the corresponding Laplacian
matrix LG are set as:

AG =

0 1 1
0 0 4
0 2 0

 , LG =

2 −1 −1
0 4 −4
0 −2 2

 .

The detailed settings of initial positions, velocities, and target
positions of two dimensions are as follows:

px(0) =

600600
600

 , ηx =

 600
1200
600

 , vx(0) =

300300
0

 ,

py(0) =

10001600
2400

 , ηy =

12001600
2000

 , vy(0) =

−100
−200
100

 .

Then, distortion and deviation are used to describe the
effectiveness of the attacks. The first indicator reflects the
degree of distortion in the formation, and the second indi-
cator displays the deviation between the current states and
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(a) Velocities of robots on the x-axis (b) Velocities of robots on the y-axis (c) Positions of robots (d) Convergence of deviation

Fig. 1. The positions, the velocities and the deviation Ed2 of robots under the normal algorithm

(a) Velocities of robots on the x-axis (b) Velocities of robots on the y-axis (c) Positions of robots (d) Convergence of deviation

Fig. 2. The positions, the velocities and the deviation Ed2 of robots under the TPMC algorithm

(a) φ < 1 (b) φ = 1

Fig. 3. The error performance of the TPMC algorithm

the prescribed formation states. Specifically, the measure of
formation distortion can be written as:

Ed1 =

√√√√ N∑
i=1

(p̃x,i(k)− p̄x(k))
2
+ (p̃y,i(k)− p̄y(k))

2
,

where (p̄x(k), p̄y(k)) is the centroid of the formation. The
deviation can be written as:

Ed2 =

N∑
i=1

√(
p̃x,i(k)− p̃∗x,i(k)

)2
+
(
p̃y,i(k)− p̃∗y,i(k)

)2
+ α

N∑
i=1

√(
vx,i(k)− v∗x,i(k)

)2
+
(
vx,i(k)− v∗x,i(k)

)2
.

Then we would like to verify the protectiveness of the algo-
rithm against the attacks that may be launched by adversaries.
As mentioned in Section II, the attacks can be categorized
into two kinds in our scenario. In the simulation part, we
conduct these kinds of attacks separately to display the danger
of the attack and the performance of the topology-preserving
algorithm. In the simulations, the attacks are simplified as:

• Sensor Attack: Infer the most important robot i, and set
the weight of the edge (i, j),∀j ∈ Ni to 0.

• Mobility Attack: Infer the most important robot i, and set
its velocity to 0.

B. Simulation Results

Fig. 1 and Fig. 2 depict changes in the positions and
velocities of robots in the system during the formation progress
under the normal algorithm and the TPMC algorithm with
a perturbation sequence {cm}τem=0 = {1,−1,−1, 1}, respec-
tively. It can be seen in the figures that the proposed algorithm
ensures the prescribed formation, although positions and ve-
locities may fluctuate due to the perturbation signals. Fig. 3
illustrates the error performance of the proposed algorithm
with different perturbation sequences {cm}τem=0. Firstly, it
demonstrates that the topology of the MRS can be accurately
inferred when the normal algorithm is applied, as shown by
the purple lines parallel to the x-axis. On the other hand, the
proposed TPMC algorithm effectively enlarges the inference
error. Fig. 3(a) and Fig. 3(b) depict the error performance of
the proposed TPMC algorithm for the cases when φ < 1 and
φ = 1, respectively. In both cases, the inference error keeps a
rather smooth line. The difference in the setting of perturbation
sequences exhibits as the primary factor that impacts the
inference error. It can also be seen in the figures that when the
observation time k is less than 30, the inference error is large
due to limited data. Generally, these results are consistent with
Theorem 5. Note that the amplitude of the perturbation signals
can be large for better protection. The performance of motion
coordination can still be guaranteed because the second-order
dynamics of the system determine that the changes in positions
are limited. Fig. 4 shows the changes in the states of robots
under the TPMC algorithm where the perturbation sequence
is {cm}τem=0 = {100,−100,−100, 100}.

To conclude, the simulation results demonstrate that the
TPMC algorithm performs well in addressing the topology
preservation problem for MRSs with second-order dynamics.
The performance of the TPMC algorithm is significantly
impacted by parameter τe.

The performance of the algorithm dealing with different
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(a) Velocities of robots on the x-axis (b) Velocities of robots on the y-axis (c) Positions of robots (d) Convergence of deviation

Fig. 4. The positions, the velocities and the deviation Ed2 of robots under the TPMC algorithm with strong perturbation signals

(a) Normal algorithm (4) (b) The TPMC algorithm

Fig. 5. The performance of the normal algorithm and the TPMC algorithm
facing sensor attacks

(a) Normal algorithm (4) (b) The TPMC algorithm

Fig. 6. The performance of the normal algorithm and the TPMC algorithm
facing mobility attacks

kinds of attacks is shown in Fig. 5 - Fig. 6. The distortion and
the deviation under attacks are shown in Table I. Specifically,
employing the normal algorithm (4), the Laplacian matrix can
be accurately regressed, consequently revealing that robot 2 is
the most important robot in this MRS. In contrast, under the
TPMC algorithm, the regressed matrix is

L̂G(k) =

29.0412 2.6884 −34.5871
−4.4888 4.6560 −3.9448
5.4096 −1.1154 −9.4185

 ,

and the most important node regressed is robot 1.
Under sensor attacks, the matrices Aa

G , A
b
G under normal

algorithm (4) and the TPMC algorithm become

Aa
G =

0 1 1
0 0 0
0 2 0

 , Ab
G =

0 0 0
0 0 4
0 2 0

 ,

respectively. Note that Aa
G retains a spanning tree, while the

vector w is drastically changed. In contrast, Ab
G loses the

spanning tree, but the weight ratio between robot 2 and robot
3 remains. Therefore, the system exhibits less deviation when
the TPMC algorithm is applied.

Fig. 7. Overview of the platform

Mobility attacks will not change the topology of the MRS.
Due to the inherent characteristic of the MRS, the vector
w = [0, 1/3, 2/3]. When robot 2 is attacked, i.e., vx,2(k) = 0
and vy,2(k) = 0, the velocities for all the robots will become 0.
However, with the protection of the TPMC algorithm, the robot
1 will be attacked, with vx,1(k) = 0 and vy,1(k) = 0, which
does not interfere with other robots. In this way, the formation
will experience a significant distortion, but the unattacked
robots can keep their motions.

C. Real-World Experiments

Then we use the self-designed mobile robot platform [37]
in our laboratory to implement real-world experiments thus
verifying the practicability of the algorithm. The platform
contains a 5m × 3m rectangular field and an AprilTag-based
real-time localization system, as is shown in Fig. 7. The data
of the platform is saved in the database and transferred using
the ZigBee protocol. The control commands based on the
localization results are implemented by MATLAB R2020b in
a VMWare ESXI virtual machine, which is equipped with an
Intel(R) Xeon(R) Gold5220R CPU, a 2.20 GHz processor, and
a 16GB RAM.

Take mobility attacks as an example, we conduct real-world
experiments on our robotic platform with three UGVs. The
results can be seen in Fig. 8 with the whole procedure being
divided into three stages. In the first stage, the robots start to
move from the initial states. Then, the topology is inferred
by adversaries, and the most important robot in the inferred
topology is attacked. The third stage displays the coordination
performance after the attack. Overall, the results of the real-
world experiments are in line with the simulations.
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(a) Normal algorithm: stage 1 (b) Normal algorithm: stage 2 (c) Normal algorithm: stage 3

(d) TPMC algorithm: stage 1 (e) TPMC algorithm: stage 2 (f) TPMC algorithm: stage 3

Fig. 8. Real-world experiments: mobility attack under the normal algorithm and the TPMC algorithm

VI. CONCLUSION

In this work, we focus on the topology preservation problem
in motion coordination in MRSs with second-order dynamics.
To address this problem, we propose the TPMC algorithm,
where perturbation signals are designed for robots to make
it hard for adversaries to perform topology inference attacks
while guaranteeing the achievement of the prescribed forma-
tion. The convergence and inference error performance of the
MRS under the proposed algorithm are analyzed. Extensive
simulations and real-world experiments are conducted to verify
the effectiveness of the proposed algorithm in maintaining
the precise motion coordination in MRSs and weakening the
topology inference ability of the adversaries. Future research
directions include expanding our study to more general net-
works, such as higher-order multi-robot systems with switch-
ing topology networks, and exploring algorithms that adapt to
other topology inference methods.

APPENDIX

A. Proof of Lemma 2

Proof. Denote k0 as the last iteration where the perturbation
signal is added to the system. Substitute k0 into (13),[

p̃(k0 + 1)

v(k0 + 1)

]
= Gk0+1

[
p̃(0)

v(0)

]
+

k0∑
l=0

Gk0−ℓ−1

[
T 2

2 θ(ℓ)

Tθ(ℓ)

]
.

Denote
[
θp,ℓ(k)

θv,ℓ(k)

]
= Gk−ℓ−1

[
T 2

2 θ(ℓ)

Tθ(ℓ)

]
,∀ℓ ∈ {0, · · · , k0}. It

is easy to derive from (7a) and (7b) that:

lim
k→∞

θv,ℓ(k) = T1w⊺θ(ℓ),

lim
k→∞

θp,ℓ(k) =
T 2

2
1w⊺θ(ℓ) + (k − ℓ)T 2w⊺θ(ℓ).

Therefore, for a given finite perturbation sequence {θi(ℓ), ℓ =
0, · · · , k0} in the infinite run, we generally have

lim
k→∞

Gk−k0

k0∑
ℓ=0

Gk0−ℓ−1

[
T 2

2 θ(ℓ)

Tθ(ℓ)

]

= lim
k→∞

k0∑
ℓ=0

[(
k − ℓ+ 1

2

)
T 21w⊺θ(ℓ)

T1w⊺θ(ℓ)

]
.

(27)

Clearly, the impact of θ(ℓ) in the infinite horizon equals 0 if
and only if (27) converges to zero, which further yields (15).
The proof is completed.

B. Proof of Lemma 3

Proof. The proof of Lemma 3 follows from the proof of
Lemma 2. First, we take an element-wise view on (27). When
all elements of the right-hand side (RHS) of (27) are zeros, it
is equivalent to

lim
k→∞

{
k0∑
ℓ=0

w⊺θ(ℓ)

}
= lim

k→∞

{
k0∑
ℓ=0

N∑
i=1

wiθi(ℓ)

}

= lim
k→∞

{
N∑
i=1

wi

k0∑
ℓ=0

θi(ℓ)

}
= 0, (28)

and

lim
k→∞

{
k0∑
ℓ=0

[(
k − ℓ+

1

2

)
w⊺θ(ℓ)

]}

= lim
k→∞

{
k0∑
ℓ=0

[(
k − ℓ+

1

2

) N∑
i=1

wiθi(ℓ)

]}

= lim
k→∞

{
N∑
i=1

wi

k0∑
ℓ=0

(
k − ℓ+

1

2

)
θi(ℓ)

}
= 0. (29)
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It is easy to obtain that if
k0∑
ℓ=0

θi(ℓ) = 0, ∀i ∈ V, (30)

then (28) holds. Similarly,
k0∑
ℓ=0

(
k − ℓ+ 1

2

)
θi(ℓ) = 0,∀i ∈ V

is also sufficient to satisfy (29). Moreover, it can be further
simplified by applying the condition (30), yielding that

k0∑
ℓ=0

(
k−ℓ+

1

2

)
θi(ℓ) =

(
k +

1

2

) k0∑
ℓ=0

θi(ℓ)−
k0∑
ℓ=0

ℓθi(ℓ) = 0

⇒
k0∑
ℓ=0

ℓθi(ℓ) = 0, ∀i ∈ V. (31)

Finally, notice that (30) and (31) together constitute a group
of homogeneous equations. To make them simultaneously
hold while having multiple solutions, the number of non-
zero perturbation variables must be larger than the number
of equations. The proof is completed.

C. Proof of Theorem 1
Proof. In this part, we mainly prove that the perturbation
signal design in (20) satisfies the precise motion coordination
conditions. Under our overall framework, the second equation
of (16) for i-th robot can be written as

k0∑
ℓ=0

ℓθi(ℓ) =

k0−τe∑
x=0

x+τe∑
ℓ=x

ℓωi(ℓ |x)bi(x)

=

k0−τe∑
x=0

(
τe∑

m=0

mcm

)
bi(x)ai(k).

(32)

Similarly, we have
k0∑
ℓ=0

θi(ℓ) =

k0−τe∑
x=0

x+τe∑
ℓ=x

ωi(ℓ |x)bi(x)

=

k0−τe∑
x=0

(
τe∑

m=0

cm

)
bi(x)ai(k)

(33)

Substituting the coefficient condition (19) for {cm}τem=0 into

(32) and (33) yields that
k0∑
ℓ=0

ℓθi(ℓ) = 0 and
k0∑
ℓ=0

θi(ℓ) = 0,

which completes the proof.

D. Proof of Theorem 2
Proof. This part mainly proves the asymptotic convergence of
the infinite TPMC algorithm. Since the perturbation sequence
is infinite, (16) is not sufficient for the proof in this case.

Based on (13), Equation (22) is equivalent to:

lim
k→∞

E

∥∥∥∥∥
k−1∑
ℓ=0

Gk−ℓ−1

[
T 2

2 θ(ℓ)

Tθ(ℓ)

]∥∥∥∥∥
2
 = 0. (34)

Recall the definition and the properties of {cm}τem=0, the
perturbation signal θi(ℓ) can be written in the following form:

θi(ℓ) =

min(ℓ,τe)∑
m=0

cmai(ℓ−m)bi(ℓ−m).

We denote Λ(k) =
k−1∑
ℓ=0

Gk−ℓ−1

[
T 2

2 θ(ℓ)

Tθ(ℓ)

]
and derive that

Λ(k) =

τe∑
ℓ=0

Gk−ℓ−1


T 2

2

ℓ∑
m=0

cmB(ℓ−m)a(ℓ−m)

T
ℓ∑

m=0
cmB(ℓ−m)a(ℓ−m)



+

k−1∑
ℓ=τe+1

Gk−ℓ−1

T 2

2

τe∑
m=0

cmB(ℓ−m)a(ℓ−m)

T
τe∑

m=0
cmB(ℓ−m)a(ℓ−m)


=

k−τe−1∑
ℓ=0

(
τe∑

m=0

cmGk−ℓ−m−1

)[
T 2

2 B(ℓ)a(ℓ)

TB(ℓ)a(ℓ)

]
(35)

+

k−1∑
ℓ=k−τe

(
k−ℓ−1∑
m=0

cmGk−ℓ−m−1

)[
T 2

2 B(ℓ)a(ℓ)

TB(ℓ)a(ℓ)

]
,

where the matrix B(ℓ) = diag{b1(ℓ), · · · , bN (ℓ)}, and the
vector a(ℓ) =

[
a1(ℓ) · · · aN (ℓ)

]⊺
. Define two auxiliary

matrices G̃c,a(k, ℓ) and G̃c,b(k, ℓ) as

G̃c,a(k, ℓ) =

τe∑
m=0

cmGk−ℓ−m−1,

G̃c,b(k, ℓ) =

k−ℓ−1∑
m=0

cmGk−ℓ−m−1.

Then, substituting (35) into (34), the mean square error is
further written as

E

∥∥∥∥∥
k−1∑
ℓ=0

Gk−ℓ−1

[
T 2

2 θ(ℓ)
Tθ(ℓ)

]∥∥∥∥∥
2
 (36)

=tr

(
E

[
k−1∑
ℓ=0

Gk−ℓ−1

[
T 2

2 θ(ℓ)
Tθ(ℓ)

](k−1∑
ℓ=0

Gk−ℓ−1

[
T 2

2 θ(ℓ)

Tθ(ℓ)

])⊺])

=

k−τe−1∑
ℓ=0

tr

(
ϵσ2

ℓ G̃c,a(k, ℓ)

[
T 4

4 IN
T 3

2 IN
T 3

2 IN T 2IN

]
G̃⊺

c,a(k, ℓ)

)

+

k−1∑
ℓ=k−τe

tr

(
ϵσ2

ℓ G̃c,b(k, ℓ)

[
T 4

4 IN
T 3

2 IN
T 3

2 IN T 2IN

]
G̃⊺

c,b(k, ℓ)

)

=

k−τe−1∑
ℓ=0

∥∥∥G̃c,a(k, ℓ)Q
∥∥∥2
F
ϵσ2

ℓ +

k−1∑
ℓ=k−τe

∥∥∥G̃c,b(k, ℓ)Q
∥∥∥2
F
ϵσ2

ℓ

≤ϵ∥Q∥2F
k−τe−1∑

ℓ=0

∥∥∥G̃c,a(k, ℓ)
∥∥∥2
F
σ2
ℓ︸ ︷︷ ︸

1

+ϵ∥Q∥2F
k−1∑

ℓ=k−τe

∥∥∥G̃c,b(k, ℓ)
∥∥∥2
F
σ2
ℓ︸ ︷︷ ︸

2

where the property E[ai(ℓ)bi(ℓ)] = ϵσ2
ℓ is applied in the third

row, and Q ∈ R2N×2N is an orthogonal matrix such that

QQ⊺ =

[
T 4

4 IN
T 3

2 IN
T 3

2 IN T 2IN

]
⪰ 0. (37)

In the following, we can turn to prove that both term 1 and
term 2 will converge to zero as k → ∞.
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For term 1 , recall that the Jordan decomposition of matrix
G can be written as G = M diag {J1, J2, · · · , Jq}M−1 with

J1 =

[
1 1
0 1

]
. In this way, G̃c,a(k, ℓ) is equivalent to

G̃c,a(k, ℓ)=M diag

{
τe∑

m=0

cmJk−ℓ−m−1
i , i=1,· · · ,q

}
M−1.

In particular, due to property of {cm}τem=0 given by (19), the
first Jordan block of G̃c,a(k, ℓ) satisfies

τe∑
m=0

cmJk−ℓ−m−1
1 =

τe∑
m=0

cm

[
1 k − ℓ−m− 1
0 1

]
=

τe∑
m=0

[
cm cm(k − ℓ− 1)
0 cm

]
−
[
0 mcm
0 0

]
= 0. (38)

Meanwhile, since the modulus of all eigenvalues of G except
µ1 = 1 is smaller than one, the power of their corresponding
Jordan blocks, Jk

q0(q0 ̸= 1), will decay to zero exponentially
as k → ∞. Based on the above facts, when the index ℓ is
fixed, the non-zero elements of G̃c,a(k, ℓ) will converge to
zero exponentially as k → ∞. Hence, there exists a bounded
cδ > 0 and a constant ρδ that is sufficiently close to zero

and satisfies φ ≤ ρδ < 1, such that
∥∥∥G̃c,a(k, ℓ)

∥∥∥2
F

is upper
bounded by ∥∥∥G̃c,a(k, ℓ)

∥∥∥2
F
≤ cδρ

k−ℓ
δ . (39)

Then, it can be derived that

k−τe−1∑
ℓ=0

∥∥∥G̃c,a(k, ℓ)
∥∥∥2
F
σ2
ℓ ≤cδσ

2
0ρ

k
δ

k−τe−1∑
ℓ=0

(
φ2

ρδ
)ℓ

≤cδσ
2
0ρ

k
δ (k − τe), (40)

which will converge to zero when k → ∞.
As for 2 , it only contains τe terms and will converge to

zero when k → ∞, because
∥∥∥G̃c,b(k, ℓ)

∥∥∥2
F

is strictly bounded

and φ2ℓ converges exponentially fast. Finally, we obtain that
(36) will converge to zero and complete the proof of (22).

E. Proof of Theorem 3

Proof. The derivation of ρm under the TPMC algorithm
strictly follows the definition in (24).

Based on the definition of δ(k), we obtain

δ(k + 1) =

[
p̃(k + 1)

v(k + 1)

]
−

[
p̃∗(k + 1)

v∗(k + 1)

]

= G

[
p̃(k)

v(k)

]
+

[
T 2

2 θ(k)

Tθ(k)

]
−G

[
p̃∗(k)

v∗(k)

]

= Gδ(k) +

[
T 2

2 θ(k)

Tθ(k)

]
.

Similar to (13), δ(k) can be expanded as

δ(k) = Gkδ(0) + Λ(k). (41)

Therefore, it can be derived that

δ(k)⊺δ(k) =δ(0)⊺Gk⊺Gkδ(0) + Λ(k)⊺Λ(k)

+ δ(0)⊺GkΛ(k) + Λ(k)⊺Gk⊺δ(0).
(42)

By taking expectation on δ(k)⊺δ(k), we have

E[δ(k)⊺δ(k)] = δ(0)⊺Gk⊺Gkδ(0)

+E

[
k−1∑
ℓ=0

θ(ℓ)⊺
[
T 2

2 IN TIN

]
Gk−ℓ⊺Gk−ℓ

[
T 2

2 IN

TIN

]
θ(ℓ)

]
.

Let M⊺
k−ℓ =

[
T 2

2 IN TIN

]
Gk−ℓ⊺, we have

E[δ(k)⊺δ(k)]=δ(0)⊺Gk⊺Gkδ(0)+

k−1∑
ℓ=0

(ϵCφ)2ℓtr(M⊺
k−ℓMk−ℓ),

where C =
∑τe

m=0 |cm| is the constant depending on the
perturbation sequence {cm}τem=0, and tr(·) indicates the trace
of a matrix. For any matrices A and B, inequalities tr(A⊺A) =
∥A∥2F and ∥AB∥F ≤ ∥A∥F ∥B∥F hold true. Furthermore,∥∥∥[T 2

2 IN TIN

]∥∥∥2
F

= N
(

T 4

4 + T 2
)

. Therefore, it can be
derived that

E[δ(k)⊺δ(k)] ≤ δ(0)⊺Gk⊺Gkδ(0)

+N

(
T 4

4
+ T 2

) k−1∑
ℓ=0

(ϵCφ)2ℓ∥G∥2k−2ℓ
F ,

with both terms on the RHS being non-negative. The factors
related to k are µm(G)2k and max{(ϵCφ)2k, µm(G)2k},
respectively. According to (24), we have

ρm ≜ lim
k→∞

(
µm(G)2k +max{(ϵCφ)2k, µm(G)2k}

) 1
k . (43)

One thus concludes that the mean square convergence rate is
ρm, which is dependent on the matrix G and the perturbation
signals designed by the algorithm. The proof is completed.

F. Proof of Theorem 5

Proof. Similar to [36], we consider the compact Singular
Value Decomposition (SVD) of Yθ(k) as Yθ(k) = UΣV ⊺,
where U ∈ R2N×2N and V ∈ Rk×k are unitary matrices
such that UU⊺ = I and V V ⊺ = I . Note that we have
∆G(k) = Θ(0; k)Yθ(k)

⊺(Yθ(k)Yθ(k)
⊺)−1, which implies that

∥∆G(k)∥ =
∥∥Θ(0; k)Yθ(k)

⊺(Yθ(k)Yθ(k)
⊺)−1

∥∥
≤
√

1/λmin(Yθ(k)Yθ(k)⊺) ∥Θ(0; k)V ∥ .

To analyze the characteristic of
√
1/λmin(Yθ(k)Yθ(k)⊺), we

need to recall that

λmin(Yθ(k)Yθ(k)
⊺) = λmin

(
k−1∑
ℓ=0

x(ℓ)x(ℓ)⊺

)
.

According to Theorem 1 in [38], for any matrix G, the
following inequality holds true:

λmin

(
k−1∑
ℓ=0

Γℓ(G)

)
≥ 1

2ε2
log

(
1

3δG

)
,
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where Γℓ(G) =
∑ℓ

s=0 G
ℓGℓ⊺ is the finite-time controllability

Gramian of the system, and ε, δG describe the accuracy of the
OLS estimator. Therefore, it can be concluded that√

1/λmin(Yθ(k)Yθ(k)⊺) = O(1).

Based on (21) and the variances of the perturbation signals,
the expectation of ∥Θ(0; k)∥2F can be written as

E
[
∥Θ(0; k)∥2F

]
=

(
T 2

2
+ T

)
N · E

[
k−1∑
x=0

θi(k)
2

]
,

=

(
T 2

2
+T

)
N

[
τe∑

x=0

x∑
m=0

c2mφ2(x−m)+

k−1∑
x=τe+1

τe∑
m=0

c2mφ2(x−m)

]
.

Since ∥A∥ ≤ ∥A∥F holds for every matrix A and the unitary
matrix U ∈ Rn×n satisfies ∥U∥ = 1, it derives that

E [∥Θ(0; k)V ∥] =

{
O(1), φ < 1,

O(
√
k), φ = 1.

Combining the result in Theorem 4 and

lim
k→∞

E [∥∆G(k)∥] =

{
O(1), φ < 1,

O(
√
k), φ = 1,

the proof is completed.
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